
Cellular networks as models for Planck-scale physics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 7997

(http://iopscience.iop.org/0305-4470/31/39/014)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 7997–8021. Printed in the UK PII: S0305-4470(98)85388-2

Cellular networks as models for Planck-scale physics

Manfred Requardt
Institut für Theoretische Physik, Universität Göttingen, Bunsenstrasse 9, 37073 Göttingen,
Germany

Received 20 February 1998, in final form 19 June 1998

Abstract. Starting from the working hypothesis that both physics and the corresponding
mathematics have to be described by means of discrete concepts on the Planck scale, one
of the many problems one has to face in this enterprise is to find the discrete protoforms of the
building blocks of our ordinary continuum physics and mathematics. We base our own approach
on what we call ‘cellular networks’, consisting of cells (nodes) interacting with each other via
bonds (figuring as elementary interactions) according to a certain ‘local law’. Geometrically our
dynamical networks are living ongraphs. Hence a substantial amount of the investigation is
devoted to the development of various versions of discrete (functional) analysis and geometry
on such (almost random) webs. Another important topic we address is a suitable concept of
intrinsic (fractal) dimensionon erratic structures of this kind. In the course of the investigation
we make comments concerning both different and related approaches to quantum gravity as,
say, thespin network framework. It may perhaps be said that certain parts of our programme
seem to be a realization of ideas sketched by Smolin some time ago.

1. Introduction

There exists a suspicion in parts of the scientific community that nature may be discrete or
rather ‘behaves discretely’ on the Planck scale. But even if one is willing to agree with this
‘working philosophy’, it is far from evident what this vague metaphor might actually mean
or how it can be implemented into a concrete and systematic inquiry concerning physics
and mathematics in the Planck regime.

There are basically two attitudes to ‘discreteness on the Planck scale’. One comprises
approaches which start (to a greater or lesser degree) from continuum concepts (or more
specifically, concepts more or less openly inspired by them) and then try to detect or create
modes of ‘discrete behaviour’ on very fine scales, typically by imposing quantum theory in
full or in part upon the model system or framework under discussion. There are prominent
and very promising candidates in this class like, for example,‘string theory’ or ‘loop
quantum gravity’. Somewhat intermediate is a more recent version (or rather, aspect) of
the latter approach, its‘polymer’ respectively‘spin network’variants. As these approaches
are widely known we refrain from citing the vast corresponding literature. We recommend
instead [1, 2] as recent reviews of the latter approach, containing some cursory remarks
about the former together with a host of references, and, as a beautiful introduction to the
conceptual problems of quantum gravity in general [3].

Alternatively one can adopt an even more speculative and radical attitude and approach
the Planck regime from the opposite direction by developing a framework with ‘discreteness’
already built in and then try to reconstruct, ‘bottom up’ (so to speak), all the continuum
concepts of ordinary spacetime physics as‘collective quantities’ such as, for example
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‘collective excitations’via the cooperation of many microscopic (discrete) degrees of
freedom. If one were very bold one could even entertain the idea that the quantum
phenomena are perhaps not the eternal and irreducible principles they are still viewed as
today by the majority of physicists but, rather, may come to be seen as derived and secondary
concepts, together with gravitation, emerging from a more primordial, truly discrete and
‘combinatorial’ theory. As for corresponding strategies, see the perhaps prophetic remarks
of Penrose [4] and the ideas presented in [5, p 267]. In a wider context see also the ideas of
Sorkin and Balachandranet al [6], while the approach of ’t Hooft [7] is noteworthy because
of its emphasis on the possible usefulness ofcellular automata(i.e. simpler and more rigid
variants of ourcellular networks).

We would like to add a clarifying remark concerning [5]. The mentioned ideas are
sketched near the end of a long contribution and we stumbled upon them only recently
(February 1998). One could perhaps say that the framework we develop here (and in
related papers [8–11] is, at least in part, an implementation of Smolin’s programme. One
of the main motivations of both Smolin’s and our approach is the hope that, proceeding in
this way, the peculiar form of nonlocality or entanglement observed in quantum theory can
actually be implemented and thus better understood.

It goes without saying that such a radical approach is beyond the reach of direct
experimental verification in the strict sense for the foreseeable future (as with the other
frameworks mentioned above). Rather one has to rely on inner theoretical criteria: among
other things, the capability to generate the hierarchy of increasingly complex patterns we are
observing in nature or in present day‘effective theories’, which describe the various regimes
many orders of magnitude away from the Planck scale, while introducing as few, simple
and elementary assumptions as possible. One would like such a framework to provide clues
as to how the continuum concepts of ordinary spacetime physics/mathematics may emerge
in a natural manner from their respective‘discrete protoforms’.

Another more aesthetic criterion would be a kind of natural convergence of the different
approaches towards a common substructure which is discrete in a really primordial way.
Indications for such a convergence can be detected in various lines of research going
on presently. ‘Spin networks’and ‘polymer states’are cases in point where modes of
discreteness emerge from an, at first glance, continuous environment. It may well be that
‘string field theory’ will turn out to live on a more discrete and singular substratum than
presently suspected (some speculative remarks pointing in this direction can be found at
the end of [12]), a catchword being‘fractal geometry’. A brief but illuminating analysis
concerning such a possible convergence in the future towards a decidedly discrete and
‘combinatorial’ common limit is given in section 8 of [1]. A group of related ideas with
which we sympathize is developed by Nottale [13].

In this paper we embark on the development of a conceptual framework which
has a pronounced combinatorial flavour and makes contact with various branches of
modern discrete mathematics such asalgebraic combinatorics, (random) graph theoryand
noncommutative geometry. Our argument is in three parts. Section 2 deals with the dynamics
of ‘cellular networks’. Our approach is different from perhaps more canonical approaches
which rely in a more or less open way on ideas already employed in the continuum versions
such as ‘fields’, ‘ path integrals’ or a relative regular substratum like a periodic lattice
structure. In contrast, we regard most of these concepts as ‘emergent structures’ according
to our working philosophy. In other words, these patterns need not have identifiable
counterparts on the primordial scale. Thus we share the philosophy of Smolin, Ashtekar,
and quite a few others (see for example, section 6.1 in [14]), that even if it is agreed
that a continuum theory has to be understood as the coarse-grained limit of an underlying
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‘critical’ discrete and more fundamental theory, that is no sufficient reason to surmise that
the primordial building blocks or the dynamics at the fundamental core of our universe will
share a lot of similarities with the (almost) continuum concepts of our ‘effective theories’
living in a regime of at most intermediate energies many orders of magnitude away from
the Planck regime.

In section 3 we show how one can introduce versions ofdiscrete analysisandgeometry
into erratic environments. At the same time we compare our approach with other existing
ones (being, in part, derivatives of noncommutative geometry in the sense of Conneset al).

Finally, in section 4 we develop dimensional concepts on such discrete spaces. We
would like to stress that we consider it of crucial importance not to base such concepts on
anything which could be identified as a variant of a continuum or embedding space. As
to these ideas much more can be found in [8], in particular concerning various conceptual
relations tofractal geometry.

We close this introduction with a clarifying remark. To discretize continuum quantum
gravity (or rather certain models), e.g. to put it on a lattice or triangulate it, is of course not
new, but most of the approaches we are aware of discretize continuum theories living in
a fixed embedding space with a definite dimension in the standard sense. Furthermore the
kind of discretizations being employed are typically relatively regular while in our approach
the underlying graphs are rather random structures with vertices and bonds as dynamical
variables which can even be switched on or off. As a consequence the dimension of our
networks is an ‘emergent’ and dynamical, perhaps evenfractal, property of the system.
To mention only two representative papers of the many others employing or reviewing
strategies of the former type see [15, 16] and references therein. The thesis of Bakker [17]
and the lecture of Lee [18] should perhaps also be mentioned in this context. This does not
of course mean that there are no relations between these different approaches but we prefer
to discuss them elsewhere in order to keep this paper readable.

2. The cellular network environment

In this section we sketch the type of model systems on which the following analysis will
be based. As already mentioned, we start from a rather primordial level, trying to make
no allusions whatsoever to continuum concepts. We then show how protoforms of ideas
and notions that play a key role in ordinary continuum physics/mathematics emerge in a
relatively natural and unforced way from this framework. Cases in point are concepts such
as‘dimension’, ‘differential structure’, the idea of‘physical points’(being endowed with an
internal structure), the web of which establishes the substratum of macroscopic spacetime,
and other geometrical/topological notions. The framework even turns out to be rich enough
to support a fully fledged kind of‘discrete functional analysis’, comprising‘Laplace–Dirac
operators’etc. It is noteworthy that an advanced structure like the‘Connes’ spectral triple’
shows up very naturally in this context.

Besides the reconstruction of basic concepts of continuum physics and mathematics
another goal is to describe the microdynamics going on in this discrete substratum over (in)
which macroscopic spacetime is floating as a kind of coarse-grained‘superstructure’. The
formation of ‘physical points’and their mutual entanglement, yield the kind of‘near-/far-
order’ or ‘causal structure’we are used to from continuum spacetime.

To this end we view this substratum as, what we like to call, a‘cellular network’,
consisting of‘nodes’ and ‘bonds’. The nodes are assumed to represent certain elementary
modules (cells or ‘monads’) having a discrete, usually simple, internal state structure,
the bonds modelling elementary direct interactions among the nodes. As an important
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ingredient, these bonds are dynamical in so far as they can be in a (typically limited)
number of‘bond states’, thus implementing the varying strength of the mutual interactions
among the cells.

It is a further characteristic of our model class that these interactions are not only allowed
to vary in strength but, can be switched off or on, depending on the state of their local
environment. In other words, stated in physical terms, bonds can be created or annihilated in
the course of network evolution, which (hopefully) enables the system to undergo‘geometric
phase transitions’accompanied by an‘unfolding’ and ‘pattern formation’, starting from a
less structured chaotic initial phase. To put it briefly: in contrast to, say,‘cellular automata’,
which are relatively rigid and regular in their wiring and geometric structure (especially with
the bonds typically being nondynamical), our cellular networks do not carry such a rigid
overall order as an external constraint (e.g. a regular lattice structure); their ‘wiring’ is
dynamical and thus behaves randomly to some extent. The key is that order and modes of
regularity are expected to emerge via a process of‘self-organization’.

Definition 2.1 (class of cellular networks).
(1) ‘Geometrically’ our networks represent at each fixed‘clock time’ a ‘labelled graph’,

i.e. they consist of nodes{ni} and bonds{bik} or {dik} (see the next section), with the bond
bik connecting the nodes (cells)ni , nk. We assume that the graph has neither elementary
loops nor multibonds, that is, only nodes withi 6= k are connected by at most one bond.

(2) At each siteni we have a local node statesi ∈ q · Z with q, for the time being, a
certain not further specified elementary quantum. The bond variablesJik, attached tobik, are
in the simplest cases assumed to be two- or three-valued, i.e.Jik ∈ {±1} or Jik ∈ {±1, 0}.

Remark.
(1) In the proper graph context the notions‘vertex’ and‘edge’ are perhaps more common

(see e.g. [19]). As for some further concepts used in graph theory see below.
(2) This is, in some sense, the simplest choice one can make. It is an easy matter

to employ instead more complicated internal state spaces like, say, groups, manifolds etc.
One could in particular replaceZ by one of its subgroups or impose suitable boundary
conditions.

(3) In the following section we will give the bondsbik an ‘orientation’, i.e. (understood
in a precise algebraic/geometric sense)bik = −bki . This implies the compatibility conditions
Jik = −Jki .

Next we have to impose a dynamical law on our model network. In doing this we
are of course inspired by‘cellular automaton laws’(see e.g. [20]). The main difference,
however, is that in our context the bonds are dynamical degrees of freedom anda fortiori
can become dead or alive (active or inactive), so that the whole net is capable of performing
drastic topological/geometrical changes in the course of clock time.

A particular type of a dynamical ‘local law’ is now introduced. We assume that all the
nodes/bonds at ‘(clock) time’ t+τ , (τ an elementary clock time-step), are updated according
to a certain local rule which relates for each given nodeni and bondbik their respective
states at timet + τ to the states of the nodes/bonds of a certain fixed local neighbourhood
at time t .

It is important that, generically, such a law does not lead to a reversible time evolution,
i.e. that there will typically exist attractors in total phase space (the overall configuration
space of the node and bond states).

A crucial ingredient of our network laws is what we would like to call a ‘hysteresis
interval’. We assume that our network, called in the followingQX (‘quantum space’), starts
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from a densely entangled ‘initial phase’ QX0, in which practically every pair of nodes is on
average connected by an ‘active’ bond, i.e.Jik = ±1. Our dynamical law will have a built-
in mechanism which switches bonds off (more properly: setsJik = 0) if local fluctuations
among the node states become too large. There is then hope that this mechanism may trigger
an ‘unfolding phase transition’, starting from a local seed of spontaneous large fluctuations
towards a new phase (an attractor) carrying a certain ‘superstructure’, which we would like
to relate to the hidden discrete substratum of spacetime (points).

One example of such a law is given in the following definition.

Definition 2.2 (Local law).At each clock time-step a certain ‘quantum’ q is transported
between, say, the nodesni , nk such that

si(t + τ)− si(t) = q ·
∑
k

Jki(t) (1)

(i.e. if Jki = +1 a quantumq flows from nk to ni etc).
The second part of the law describes the back reaction on the bonds (and is, typically,

more subtle). This is the place where the so-called ‘hysteresis interval’ enters the stage. We
assume the existence of two ‘critical parameters’ 0 6 λ1 6 λ2 with.

Jik(t + τ) = 0 if |si(t)− sk(t)| =: |sik(t)| > λ2 (2)

Jik(t + τ) = ±1 if 0 < ±sik(t) < λ1 (3)

with the special proviso that

Jik(t + τ) = Jik(t) if sik(t) = 0. (4)

On the other hand

Jik(t + τ) =
{
±1 Jik(t) 6= 0

0 Jik(t) = 0
if λ1 6 ±sik(t) 6 λ2. (5)

In other words, bonds are switched off if local spatial charge fluctuations are too large,
switched on again if they are too small, (their orientation following the sign of local charge
differences) or remain inactive.

Remark.
(1) The reason we do not choose the ‘current’q · Jik proportional to the ‘voltage

difference’ (si − sk) as e.g. in Ohm’s law is that we favour anonlinear network which is
capable ofself-excitationandself-organizationrather thanself-regulationaround a relatively
uninteresting equilibrium state! The balance between dissipation and amplification of
spontaneous fluctuations has, however, to be carefully chosen (‘complexity at the edge of
chaos’).

(2) We have emulated these local network laws on a computer. It is not yet clear whether
this simple network law does everything we expect. Nonetheless, it is fascinating to observe
the enormous capability of such intelligent networks to find attractors very rapidly, given
the enormous accessible phase space.

(3) In the above class of laws a direct bond–bond interaction is not yet implemented.
We are prepared to incorporate such a contribution step if it turns out to be necessary,
although there are not so many ways to do this in a sensible way. Stated differently, the
class of possible physically sensible interactions is perhaps not so numerous.

(4) Note that, in contrast to, for example, Euclidean lattice field theory, the‘clock time’
t is, for the time being, not standing on the same footing as potential ‘coordinates’ in the
network (e.g. curves of nodes/bonds). We rather suppose that so-called‘physical time’will
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emerge as a sort of secondary collective variable in the network, i.e. will be different from
the clock time (while being of course functionally related to it).

In our view remark 4 is consistent with the spirit of relativity. What Einstein was really
teaching us is that there is a (dynamical) interdependence between what we experience as
space, respectively time, not that they are absolutely identical! In any case, the assumption
of an overall clock time is only made for convenience in order to not make the model
system too complicated. If our understanding of the complex behaviour of the network
dynamics increases, this assumption may be weakened in favour of a possibly local and/or
dynamical clock frequency. A similar attitude should be adopted concerning concepts like
‘Lorentz-(in)covariance’which we also consider as‘emergent’properties. Needless to say
it is of tantamount importance to understand how these patterns emerge from the relatively
chaotic background, a question that will be addressed in future work.

As can be seen from the definition of the cellular network, a full-scale investigation of
its behaviour separates quite naturally into two parts of both a different mathematical and
physical nature. One part comprises its more geometric/algebraic content in the form of
large static graphs and their intricate structure (at, say, arbitrary but fixed clock time), thus
neglecting the details of the internal states of bonds and nodes, the other conveys a more
dynamical flavour, analysing and keeping track of the topological/geometrical change and
pattern formation in the course of clock time. Both parts represent an intricately entangled
bundle of complicated problems and require the development or application of a fair amount
of quite advanced (discrete) mathematics. We concentrate here on the former part. As for
the latter part, an impression of the impending problems is given in [11] which, however,
should only be considered a preliminary draft.

Before we embark on studying in detail the ‘pregeometric’ patterns in cellular networks
we want to briefly comment on the more general structure of evolution laws in such systems.
The above is only one candidate from a whole class of such laws. For one thing, it is quite
evident that the ‘local state spaces’ living over the respective nodes and bonds can be chosen
in a more general way. For another, the local dynamical law can also be chosen to be more
general.

Definition 2.3 (general local law on cellular networks).Each nodeni can be in a number
of internal statessi ∈ S. Each bondbik carries a corresponding bond stateJik ∈ J . Then
the following general transition law is assumed to hold:

si(t + τ) = lls({sk(t)}, {Jkl(t)}) (6)

Jik(t + τ) = llJ ({sl(t)}, {Jlm(t)}) (7)

(S, J )(t + τ) = LL((S, J )(t)) (8)

wherells , llJ are two maps (being the same over the whole graph) from the state space of a
local neighbourhood of the node or bond on the l.h.s. toS,J , yielding the updated values
of si andJik. S andJ denote the global states of the nodes and bonds andLL the global
law built from the local laws at each node or bond.

Irrespective of the technical details of the dynamical evolution law under discussion
it should emulate the following, in our view crucial, principles, in order to match certain
fundamental requirements concerning the capability of ‘emergent’ and ‘complex’ behaviour.

(1) As is the case with, say, gauge theory or general relativity, our evolution law on
the primordial level should encode the mutual interaction of two fundamental substructures.
Put sloppily: ‘geometry’ acting on ‘matter’ and vice versa, where in our context ‘geometry’
is assumed to correspond in a loose sense with the local and/or global bond states and



Cellular networks as models for Planck-scale physics 8003

‘matter’ with the structure of the node states. (We will not comment further on this working
philosophy here as it represents the basis of forthcoming work.)

(2) By the same token the above self-referential dynamical circuit of mutual interactions
is expected to favour a kind of ‘undulating behaviour’ or ‘ self-excitation’ above a return to
some uninteresting ‘equilibrium state’ which is frequently found among systems consisting
of a single component which directly acts back on itself. This propensity for the
‘autonomous’ generation of undulation patterns is in our view an essential prerequisite
for some form of ‘protoquantum behaviour’ we hope to recover on some coarse-grained
and less primordial level of the network dynamics.

(3) In the same sense we expect the possibility of switching on and off of bonds to
generate a kind of ‘protogravity’.

We close this section with a short aside concerning the definition of evolution laws of
‘spin networks’ by Markopoulou and Smolin and Borissov ([21, 22]). As in our case there
are two possibilities: treating evolution laws within an integrated spacetime formalism or
regarding the network as representing space alone with the time evolution being implanted
via some extra principle (which is the way we have chosen above). Closely connected with
this question is the development of a suitable concept ofdimensionin this context. We
start to develop our own concept in the final section of this paper. More information can
be found in [8]. As the interrelation of these various approaches and frameworks is both
very interesting and presently far from obvious we plan to compare them elsewhere.

3. Discrete analysis on graphs and networks

In the following we will show that despite their discreteness graphs and networks are capable
of supporting a surprisingly rich differential and geometric structure, so that the catchword
‘discrete analysis’ in the heading of this section is no exaggeration. One can even develop
a fully fledged ‘discrete functional analysis’ with Hilbert spaces, Laplacian graph, Dirac
operator etc. This then leads into the fascinating field of describing geometric structures
and patterns on the graph with the help of functional analytic tools (see [10]).

While our original approach has been developed from a somewhat different perspective
nevertheless in the course of evolution of our framework there emerged various regions
of contact and overlap with other approaches such as, for example, what is called
‘noncommutative geometry’ (see e.g. [23, 24]. As a brief but concise introduction we
also recommend [25]). If a certain part of this highly abstract machinery is applied to,
say, discrete sets, one gets a version of discrete calculus which is still a relatively abstract
scheme as long as it is not interpreted within a concrete model theory. Such an abstract
calculus has been developed by Dimakis and Mueller-Hoissenet al [26]. In the following
we will attempt, among other things, to relate these in some respects different, in other
respects related approaches to our own framework.

We develop below various schemes with only the first related in some respects to
noncommutative geometry. The others stand on a more or less independent footing. In this
first approach we treat the network as a staticlabelled graph, consisting solely ofnodes
andbonds. We start with some theoretical graph concepts.

Definition 3.1 (simple locally finite (un)directed graph).
(1) We write the ‘simple’ graph asG := (V ,E) whereV is the countable set of nodes

{ni} (or vertices) andE the set of bonds (edges). The graph is called simple if there do not
exist elementary ‘loops’ and ‘multiple edges’. In other words, each existing bond connects
two different nodes and there exists at most one bond between two nodes. (We could of



8004 M Requardt

course also discuss more general graphs.) Furthermore, for simplicity, we assume the graph
to be connected, i.e. two arbitrary nodes can be connected by a sequence of consecutive
bonds called an ‘edge sequence’ or ‘walk’. A minimal edge sequence, that is one with each
intermediate node occurring only once, is called a ‘path’ (note that these definitions may
change from author to author).

(2) We assume the graph to be ‘locally finite’, that is, each node is incident with only
a finite number of bonds. Sometimes it is useful to make the stronger assumption that this
‘vertex degree’, vi (number of bonds being incident withni), is globally bounded away
from∞.

(3) One can give the edges both an ‘orientation’ and a ‘direction’ (these two slightly
different geometric concepts are frequently intermixed in the literature). Here we adopt the
following convention. If two nodesni, nk are connected by a bond, we interpret this to
mean that there exists a ‘directed bond’, dik, pointing fromni to nk and adirected bond, dki ,
pointing in the opposite direction. In an algebraic sense, which will become clear below,
we call their ‘superposition’

bik := dik − dki = −bki (9)

the corresponding ‘oriented bond’ (for obvious reasons, the directions are fixed while the
orientation can change its sign). In a sense the above reflects the equivalence of an
‘undirected graph’ with a ‘directed multigraph’ having two directed bonds pointing in
opposite directions for each undirected bond.

We now take the elementary building blocks{ni} and{dik} as basis elements of a certain
hierarchy of vector spaces over, say,C with scalar product

〈ni |nk〉 = δik 〈dik|dlm〉 = δil · δkm. (10)

Definition 3.2 (vertex-, edge-space).The vector spaces (ormodules) C0 andC1, consist of
the finite sums

f :=
∑

fini and g :=
∑

gikdik (11)

fi, gik ranging over a certain givenfield like e.g.C or ring such as e.g.Z in the case of a
module.

Remark.
(1) These spaces can be easily completed toHilbert spaces(as in [10]) by assuming∑

|fi |2 <∞
∑
|gik|2 <∞ (12)

if one chooses the fieldC.
(2) One can continue this row of vector spaces in a way which is common practice in,

say, algebraic topology(for more details see below). In this context they could equally
well be called ‘chain complexes’.

(3) Evidently the vector spaces could also be viewed asdiscrete function spacesover
the node, bond setwith ni, dik representing the elementaryindicator functions.

We now introduce two linear maps betweenC0, C1 called for obvious reasons
‘boundary-’ and ‘coboundary map’. On the basis elements they act as follows.

Definition/observation 3.3 ((co)boundary operator).

δ : dik → nk hence bik → nk − ni (13)

d : ni →
∑
k

(dki − dik) =
∑
k

bki (14)
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and linearly extended. That is,δ maps the directed bondsdik onto the terminal node and
bik onto its ‘boundary’, whiled maps the nodeni onto the sum of the ‘ingoing’ directed
bonds minus the sum of the ‘outgoing’ directed bonds or on the sum of ‘oriented’ ingoing
bondsbki .

The following results show that these definitions lead in fact to a kind of ‘discrete
differential calculus’.

Observation 3.4 (discrete differential forms).From the above it follows that

df = d

(∑
fini

)
=
∑
k,i

(fk − fi)dik. (15)

One could now enter the field of truediscrete functional analysisby defining the so-
called ‘Laplacian graph’.

Definition/observation 3.5 (Laplacian graph).

δdf = −
∑
i

(∑
k

fk − vi · fi
)
ni = −

∑
i

(∑
k

(fk − fi)
)
ni =: −1f (16)

wherevi denotes the node degree or ‘valency’ defined above and thek-sum extends over
the nodes adjacent toni .

For more results along these lines see [10]. However, we prefer to develop a framework
which is more in the spirit of ‘discrete geometry’ or abstract ‘combinatorial topology’.

3.1. The graded semi-differential algebra of strings or walks

The elementary algebraic/geometric building blocks of our framework are the nodes and
(un)directed bonds. Next we use them to form ‘edge sequences (walks)’ or ‘ strings’.

Definition/observation 3.6 (admissible strings).With C0, C1 denoting the vector spaces
spanned by the nodes and bonds,Ck comprises finite sums of admissible edge sequences
consisting ofk consecutive edges or(k + 1) consecutive nodes. We write them as

di0i1 · di1i2 . . . dik−1ik or ni0 . . . nik (17)

where by admissible we mean that each pair of consecutive nodes is connected by a bond.
The multiplication sign standing between the respective edges is explained below and the
strings are now interpreted as normalized basis elements in the vector spaceCk over, say,C.

Remark.Note that the repeated occurrence of a particular node or bond in such a string is
not forbidden, whereas two consecutive nodes are always different.A fortiori a substring
of the form dik · dki or ninkni is admissible. Such strings or substrings are algebraically
useful if one wants to have the notion of ‘inverse string’ and a corresponding multiplication
structure (thinking of more general algebraic concepts such as groupoids etc).

We can now extend the (co)boundary mapsδ, d to consecutive pairs of spaces,Ck, Ck+1

by combining geometric imagery with experience from algebraic topology.

Definition/observation 3.7.With a certain admissible stringn0 . . . nk given (for notational
simplicity we writek instead ofik) we defineδ, d as follows:

δ(no . . . nk) :=
k∑
i=0

(−1)in0 . . . n̂i . . . nk (18)
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where the hat means that the respective node has to be deleted with the proviso that the
string is mapped to zero ifni−1, ni+1 are not connected by a bond, i.e. if the new string is
not admissible.

The extension of the coboundary operator runs as follows:

d(n0 . . . nk) :=
∑
nν,i

(−1)in0 . . . ni−1nνni . . . nk (19)

wherei runs from 0 to(k + 1) and admissible nodes are inserted before the nodeni or for
i = (k + 1) after the last nodenk. The insertion runs over all nodes being connected with
both ni−1 andni .

The geometric picture behind this scheme is quite transparent. A given string inCk
is mapped onto a superposition of strings inCk−1 or Ck+1 with appropriate weights as
prefactors.

After these preparatory steps we can now set up a certain discrete differential structure
with a strong geometric flavour. We have theN0-graded vector space

C :=
∑

Ck k ∈ N ∪ {0} (20)

with the ‘raising’ and ‘lowering’ operatorsd andδ, mapping the ‘level sets’ of homogeneous
elements,Ck, into each other.

In a first step we makeC into a ‘graded algebra’.

Definition/observation 3.8 (graded algebra).We define multiplication of homogeneous
elements via ‘concatenation’, i.e.

(ni0 . . . nik ) · (nj0 . . . njl ) = (ni0 . . . (nik · nj0) . . . njl ) ∈ Ck+l (21)

wherenik ·nj0 means the natural algebra product structure onC0, i.e. pointwise multiplication

f · g =
(∑

fini

)
·
(∑

gini

)
=
∑

figini (22)

that isnik · nj0 = δikj0nj0.

Geometrically this describes the glueing together of strings or walks, the product being
zero if the end node of the first string is different from the initial node of the second string
(in other words, this algebra has a lot of ‘zero divisors’).

As a consequenceC has a natural ‘bimodule structure’ over C0.

Corollary 3.9 (bimodule structure).With

ni · (ni . . . nk) = (ni · n1)n2 . . . nk = δi1 · n1 . . . nk (23)

(n1 . . . nk) · ni = n1 . . . (nk · ni) = δki · (n1 . . . nk) (24)

and linear extensionC becomes a bimodule over the algebraC0. Algebraicallyn1, nk play
the role of ‘left-’ and ‘right-’ identities with respect to the above string.

In order to exhibit the connection to differential calculus in the style of Connes or
Dimakis et al, we make the following observation concerning the interplay of algebraic and
differential structure.

Observation 3.10.Given an admissible stringn0 . . . nk and applying the operatord on each
of the nodesn1, . . . , nk we have the identities

nini+1 = ni · dni+1 = dni · ni+1 (25)

and hence

n0 . . . nk = (n0n1) · (n1n2) . . . (nk−1nk) (26)
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(concatenation of bonds, i.e. elementary strings)

= (n0dn1) · (n1dn2) . . . (nk−1dnk) = n0 · dn1 · dn2 . . . dnk =: n0dn1 . . . dnk. (27)

Proof. The latter manipulations exploit the algebraic (concatenation) rules we have already
established above (remember the definition ofdni as a certain superposition of 1-strings).
The former identities hold because

ni · di+1 = ni ·
(∑

k

(dk(i+1) − d(i+1)k)

)
(28)

with dk(i+1) denoting the stringnkni+1 etc, henceni ·dk(i+1) = δik ·di(i+1). That is, it survives
only the one termdi(i+1) or nini+1 since the other termni · d(i+1)k is always zero by the
definition of the concatenation product. �

It is exactly these abstract (usually uninterpreted) objectsa0da1 . . . dak which occur
in the abstract formalism of, say, ‘noncommutative de Rham complexes’ or the ‘universal
differential algebra’ (see e.g. [23] or for the case of discrete sets [26]).

Remark.
(1) In an earlier version [27] we based most of the algebraic calculus on the concept and

properties of tensor products (such as modules) which may have obscured somewhat the
very suggestive geometric imagery. On the other hand it is perhaps closer to the abstract
framework of noncommutative geometry.

(2) In the same paper we showed that our strings also realize the abstract structure
of a ‘groupoid’. For the sake of brevity we omit the development of the corresponding
framework in this paper.

The above shows that our strings form a graded algebra with concatenation as
multiplication. In a next step we show that the coboundary operatord fulfills the so-called
(graded) ‘Leibniz rule’ (well known from e.g. the exterior differential algebra)

Observation 3.11 (graded Leibniz rule).With w1, w2 two strings, it holds

d(w1 · w2) = dw1 · w2+ (−1)deg(w1)w1 · dw2 (29)

where deg(w1) = number of edges inw1

In the special case of zero-strings or functions fromC0 the analogous formula reads

d(f · g) = df · g + f · dg (30)

as deg(f ) = 0.

Proof. Whereas the latter result is contained in the former one, we also supply an additional
proof.

d(f · g) =
∑
i

figidni =
∑
i

(∑
k

(nkni − nink)
)

(31)

df · g + f · dg =
(∑

i,k

figi(nkni)−
∑
i,k

figk(nink)

)
+
(∑

i,k

fkgi(nkni)−
∑
i,k

figi(nink)

)
. (32)
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The mixedfigk-terms in the latter equation cancel each other (after a change of dummy
variables), hence the result.

In the case of general strings with

w1 = ni0 . . . nik , w2 = nj0 . . . njl (33)

we can split the action ofd onw1 ·w2 into two groups of terms, one comprising the action
within w1 or w2, the other consisting of the terms which arise from the action ofd on the
‘ interface’ betweenw1 andw2.

The terms in the first group occur also indw1 · w2 if d acts withinw1 or in w1 · dw2

modified by an extra weight factor(−1)deg(w1) if d acts withinw2.
As to the interface terms, there are three possibilities.
(1) nik and nj0 are not nearest neighbours, i.e. they are more than one bond distance

apart. In that casew1 ·w2 = 0, henced(w1 ·w2) = 0. On the other side, under this proviso
no term indw1 is incident withw2 and vice versa, that isdw1 · w2 = 0= w1 · dw2.

(2) nik 6= nj0 but they are nearest neighbours. This impliesw1 · w2 = 0 = d(w1 · w2).
Now there is exactly one term indw1 incident withw2, namelyni0 . . . niknj0 carrying the
weight (−1)ik+1. A corresponding term occurs indw2, carrying the weight(−1)0 = 1.
In the graded Leibniz rule this latter term (standing in front ofw1 · dw2) is multiplied by
(−1)ik , yielding the superposition

(−1)ik ((−1)1 · (string)+ (−1)0 · (string)) = 0. (34)

(3) The remaining possibility,nik = nj0 is very simple. The corresponding end term in
dw1 leads away fromnik = nj0. So its concatenation withw2 is zero. The same holds for the
initial term in dw2. That is, in this situation all the nonzero terms indw1 ·w2, w1 · dw2 are
internal terms, falling in the first group, discussed above, and for which the stated identity
has already been verified.

This proves the graded Leibniz rule for strings (a different proof is given in [28]).�

We have now to explain why we call our algebra a ‘semidifferential algebra’. To this
end we show that in general, i.e. if the underlying graph is not ‘complete’ or a ‘simplex’,
the relationsd · d = 0 andδ · δ = 0 do not hold for every string or node. On the other
hand they are fulfilled for a complete graph. Phenomena like these are analysed in more
detail (among other things) by Nowotny in his diploma thesis ([28]) and are not difficult to
prove in full generality. Therefore we content ourselves with giving the main line of the
reasoning (the phenomenon was already discussed in [27, section 4.3]).

Take, e.g. a graph, consisting of the nodesn0, n1, n2 and the bondsn0n1, n1n2 (plus the
‘opposite bonds’n1n0, n2n1). We have

d(n0) = −n0n1+ n1n0 and dd(n0) = −n0n1n2+ n2n1n0 6= 0. (35)

On the other hand, if the bondsn0n2, n2n0 were present we would have

dn0 = −n0n1− n0n2+ n2n0+ n1n0 (36)

and it is easy to see that all the terms inddn0 do in fact cancel.
Analysing the general case a little more systematically we observe the following. In the

‘ reduced graph’ (i.e. some bonds missing) the following can happen. Applyd to a given
string which yields, e.g. an insertion between nodeni−1 and nodeni , e.g. . . . ni−1nνni . . .

with a weight(−1)i . Applying d again may yield another admissible insertion of the type
. . . ni−1nµnνni . . . coming with the weight(−1)i · (−1)i provided thatnµ is connected with
ni andnν .
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On the other hand the ‘counterterm’ with the weight(−1)i · (−1)i+1 may be missing
as it can happen thatnµ is connected withni−1 and nν but not with ni−1 and ni so that
. . . ni−1nµni . . . does not show up in the first step in contrast to the analogous term with
nν . A similar result holds forδ, hence we have the following.

Conclusion 3.12.We call the above algebra a ‘semidifferential algebra’ since in general (if
some bonds are missing)dd 6= 0, δδ 6= 0 on certain strings. If, on the other hand, the
underlying graph is complete, we havedd = δδ = 0.

These last observations are perhaps of some help if one wants to compare our ‘bottom
up’ approach with a more ‘top down’ approach, which starts from the concept of the
‘universal differential algebra’ (see the remarks at the beginning of this section). It is then
an almost trivial observation (corresponding results being almost ubiquituous in abstract
algebra) that every ‘differential algebra’ is the homomorphic image of the universal one.
Put differently, it is isomorphic to the universal algebra divided by a certain ‘(differential)
ideal’ (see below). These results have then been applied to discrete sets by e.g. Dimakis
and Mueller-Hoissenet al [26].

We also want to stress that models, in our case networks or graphs, tend to have a more
interesting geometric or algebraic structure than suggested by such an abstract viewpoint
and should be analysed for their own sake (see also the following sections). We now briefly
comment on one particular feature that one should be aware of if one favours the abstract
approach. We call it the ‘problem of unnatural relations’.

To conform with the more abstract notation adopted in the above-mentioned literature
(or [27]), we now denote the universal differential algebra over a given set of nodes (i.e.
the complete graph) by�u =∑�uk , the reduced algebra (i.e. the actually given graph with
some bonds missing in general) by� = ∑�k. Furthermore,du is the differential on�u

with du · du = 0. Note that in�uk each sequence of(k + 1) nodes is an admissible string.
We can now define a projector5 which projects�u onto� by

5(n0 . . . nk) = 0 (37)

if (n0 . . . nk) is not admissible in�

5(n0 . . . nk) = n0 . . . nk (38)

if (n0 . . . nk) is admissible.

Consequence 3.13.We have

5 = 52 �u = 5�u + (I−5)�u (39)

with 5�u = �. We could now continue by defining

d := 5 ◦ du ◦5 (40)

which leaves� invariant but in generald · d 6= 0 in contrast todu · du = 0 as we have seen
above.

We observe that Ker(5) is a two-sided idealI consisting of the elementsn0...k having
at least one pair of consecutive nodesnot being connected by a bond in the reduced graph.
However, this idealI is not left invariant under the action ofdu! A closer analysis shows
thatdu(n0...k) /∈ I if du creates ‘insertions’between nonconnected neighbours in the reduced
graph such that nonadmissible elements become admissible, i.e. connected. We hence have
the following.
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Observation 3.14.In general there exist elementsn0...k ∈ Ker(5) such that5(du(n0...k)) 6=
0, in other words,I is in general not left invariant bydu.

If one wants to make� into a real differential algebra one has to enlargeI !

Consequence 3.15.The idealI ′ = I+du◦I is invariant underdu andd defines a differential
algebra on the smaller algebra�u/I ′ ⊂ � with � = �u/Ker(5).

(That I ′ is an ideal left invariant bydu is easy to prove with the help of the property
du · du = 0.)

So far so good, but a certain problem now emerges.�u/I ′ is the algebra one
automatically arrives at if one defines the homomorphism8 from �u to the reduced
differential algebra in the following canonical way:

8 : ni → ni duni → dni (41)

i.e. under the premise thatd defines already another differential algebra. It is in this restricted
sense that the above-mentioned general result has to be understood.

However, this may (and in general, will) lead to a host of unnatural relations in concrete
models, such as e.g. our network: models which may already carry a certain physically
motivated interpretation going beyond being a mere example of an abstract differential
algebra. Note e.g. that in our algebra� an element liken123 is admissible (i.e. nonzero)
if n1, n2 andn2, n3 are connected.n123 may, however, arise from a differentiation process
(i.e. from an insertion) likedu(n13) with n1, n3 not connected.

This is exactly the situation discussed above.

n13 ∈ I but du(n13) /∈ I. (42)

Dividing by I ′ mapsdu(n13) onto zero whereas there may be little physical or geometric
reason forn123 or a certain combination of such admissible elements being zero in our
network.

Conclusion 3.16.Given a concrete physical network� one has basically two choices. Either
one makes it into a fully fledged differential algebra by imposing further relations which may,
however, be unnatural from a physical point of view and very cumbersome for complicated
networks. This was the strategy followed in [26]. Or alternatively one considers� as the
fundamental object and each admissible element in it as being nonzero. As a consequence
the corresponding algebraic/differential structure on� may be less smooth at first glance
(dd 6= 0 in general), although considerably more natural! At the moment we refrain
from making a general judgement about the respective advantages of these two different
approaches although we incline towards the latter one.

3.2. The graph as a (higher) simplicial complex

In the previous section the geometric building blocks have been strings or walks, that is,
more or less one-dimensional objects. Now we turn our attention to higher dimensional
patterns. We start from a fixed graphG with vertex setV and edge setE. In the literature
graphs are frequently considered as ‘one-dimensional simplicial complexes’ with the nodes
as 0-simplices and the bonds as 1-simplices. We think this point of view is unnecessarily
restrictive (while there exist of course certain mathematical reasons for this restriction we do
not mention). Having our own working philosophy of networks as models for microscopic
spacetime in mind, we think this concept should be generalized.

Definition 3.17 (subsimplices).We call a subset of(k + 1) vertices a ‘k-simplex’, sk, or
‘complete subgraph’ if every two nodes ofsk are connected by a bond.
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Observation 3.18.If the node degree,vi , of ni is smaller than∞ thenni can lie in at most
a finite set of different simplices, an upper bound being provided by the number of different
subsets of bonds emerging fromni .

Proof. Assume thatsk, sl are two different simplices containingni . By definition ni is
linked with all the other nodes insk or sl . As these sets are different by assumption, the
corresponding subsets of bonds emerging fromni are different. On the other hand, not
every subset of such bonds corresponds to a simplex (there respective endpoints need not
form a simplex), which proves the upper bound stated above. �

Consequence 3.19.
(1) The set of subsimplices is evidently ‘partially ordered’ by inclusion.
(2) Furthermore, if s is a simplex, each of its subsets is again a simplex (called a ‘face’).
(3) It follows from observation 3.18 that each of these ‘chains’ of linearly ordered

simplices is finite with the same upper bound as in observation 3.18. In other words each
chain has a maximal element, a so-called ‘maximal subsimplex’ (MSS). By the same token
each node lies in at least one (but generically several) MSS.

(4) Such a MSS withni being a member can comprise at most(vi + 1) nodes. In other
words, its cardinality is the minimum of these numbers whenni varies over the MSS.

Remark.Such MSS’s are in combinatorics or graph theory called ‘cliques’. Their potential
physical role as building blocks of the microstructure of spacetime in our particular approach
has been discussed in greater depth in [11].

Observation 3.20.The class of simplices, in particular the MSS, containing a certain fixed
node,ni , can be generated in a completely algorithmic way, starting fromni . The first level
consists of the bonds withni an end node, the second level comprises the triples of nodes
(‘triangles’), (ninknl), with the nodes linked with each other and so forth. Each level set
can be constructed from the preceding one and the process stops when a MSS is reached.

Remark. Note that at each intermediate step, i.e. having already constructed a certain
particular subsimplex, there are several possible ways to proceed. However, a chain of such
choices may differ at certain places from one place to another but still lead to the same
simplex (being simply a permutation of the nodes of the latter simplex) in the end.

Next we give the simplices an ‘orientation’.

Definition 3.21 (orientation).The above simplices can be oriented via

nπ(0) . . . nπ(k) = sgn(π) · n0 . . . nk (43)

π being a permutation of(0 . . . k).

This definition can be used to give the set of simplices an algebraic structure by
identifying the simplices which fall in the same equivalence class with respect to sgnπ .
The respective equivalence class will henceforth be denoted by(ni0 . . . nik ) and we make
these classes into an orthonormal basis of some vector space of, say, finite sums over e.g.
C. The other class (negative orientation) is then simply the opposite vector−(ni0 . . . nik ).



8012 M Requardt

Consequence 3.22.The above observations show that our set of oriented simplices establish
what is called in algebraic topology an ‘abstract’ or ‘combinatorial’ ‘simplicial complex’.
If the node degree is uniformly bounded away from∞ on V , this simplicial complex has
a ‘finite degree’ (which is the cardinality of the largest occurring MSS).

Remark. By means of an elegant argument one can show that such a simplicial complex
with degree, say,n can always be embedded inR2n+1 (see e.g. [30]).

On this simplicial complex we can now define two operatorsδ, d which, however, differ
from those defined in section 3.1. We will show in particular thatδ · δ = d · d = 0 always
holds.

Definition/observation 3.23.The ‘boundary operator’δ acts in the following way on the
basis elements:

δ(n0 . . . nk) :=
k∑
l=0

(−1)l · (n0 . . . n̂l . . . nk) (44)

with n̂l being omitted as usual. Note that the terms on the r.h.s. are again simplices (faces).
It is a standard procedure to prove thatδ · δ = 0 holds. The ‘coboundary operator’d is
defined via

d(n0 . . . nk) :=
∑
nν

(nνn0 . . . nk) (45)

the sum on the r.h.s. running over the nodesnν so that the terms under the sum form again
(k+ 1)-simplices (or, put differently, the sum extends over all nodes with terms set to zero
if they do not form(k + 1)-simplices). It holdsd · d = 0.

Remark. Note that in the above formula it is important to work with equivalence classes.
Otherwise the definition would become quite cumbersome. As in the case of ‘exterior
algebra’ of e.g. forms the ordering in(. . .) is ‘anticommutative’, that is,

(nνn0 . . . nk) = −(n0nν . . . nk). (46)

Proof. We show thatd · d = 0 in fact holds. We have

dd(s) =
∑
µ

∑
ν

(nµnνs) (47)

with s a certain simplex. As both(nνnµs) and (nµnνs) = −(nνnµs) occur in the double
sum all the terms on the r.h.s. cancel. �

Observation 3.24.If we consider thesk as basis elements of the vector space introduced
above, it follows thatd is the adjoint ofδ.

Proof.

〈sk|δs ′k+1〉 =
k+1∑
ν=0

(−1)ν · 〈sk|(n′0 . . . n̂′ν . . . n′k+1)〉. (48)
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We see that at most one nonzero term can occur on the r.h.s., say,(−1)ν〈sk| ± sk〉, ±
depending on the respective orientation. On the other hand

〈dsk|s ′k+1 >〉 =
∑
nν

〈(nνn0 . . . nk)|(n′0 . . . n′k+1)〉. (49)

Again there exists at most one nonzero term on the r.h.s. with the node sequence on the
l.h.s. of the scalar product being a certain permutation of the node sequence on the r.h.s.
As a first step we permute then0 . . . nk on the l.h.s. so that they are standing in the same
relative order as on the r.h.s. This yields the same prefactor±1 as in the formula above. We
then commute the additional nodenν until it occupies the same position as ins ′k+1 yielding
another prefactor(−1)ν . �

Remark. This latter version is perhaps closer to the original point of view adopted in
cohomology theory(in the sense of, say, Alexander), where cotheory typically lives on
‘dual spaces’ (cf e.g. [29]).

Corollary 3.25.The above notion of orientation shows that e.g. the 1-simplices (i.e. bonds)
correspond rather to the oriented bondsbik = nink − nkni than to the directed bonds
dik = nink introduced in section 3.1 (see e.g. item 3 of definition 3.1). The definition ofd,
given in this section, can then be rewritten as

d(n0) =
∑
nk

(nkn0) =
∑
k

bk0 (50)

and hence turns out to be consistent with the previous one given in section 3.1, at least on
the first level.

On the higher levels the correspondence is slightly trickier: see the following remark.

Remark. For higher simplices the correspondence is slightly more involved. Take e.g. a
triangle (n0n1n2). In the spirit of section 3.1 one can take all the possible 3-strings which
can be built over this simplex, in other words, all the possible permutations ofn0n1n2 and
define the algebraic, oriented simplex(n0n1n2) of section 3.2 as follows

(n0n1n2) :=
∑
per

sgn(per) · ni0ni1ni2 (51)

with the sum running over all the permutations of(0, 1, 2) and the terms on the r.h.s. being
strings in the sense of section 3.1. It follows directly that the sum is anticommutative with
respect to rearrangements of the nodes (it may be convenient to add a global combinatorial
factor (k + 1)!−1 on the r.h.s.). From this point of view the correspondence is reminiscent
of the way exterior forms are built from tensors.

3.3. Yet another version of discrete calculus

Here we briefly comment on yet another version of discrete calculus, which is, at first
glance, perhaps the most natural one and which is absent in approaches starting from the
abstract universal differential algebra. As this variant is developed further in the diploma
thesis of Novotny (some results can already be found in [11]), in particular concerning the
method of ‘discrete Euler–Lagrange variation’, we will not elaborate much on this point.
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Definition 3.26 (partial forward derivative at node (i)).

∇ikf (i) := f (k)− f (i) (52)

whereni, nk are ‘nearest-neighbour-nodes’, i.e. connected by a bond.

Observation 3.27.

∇ik(f · g)(i) = (f · g)(k)− (f · g)(i)
= ∇ikf (i) · g(i)+ f (k) · ∇ikg(i) (53)

= ∇ikf (i)g(i)+ f (i)∇ikg(i)+∇ikf (i)∇ikg(i). (54)

In other words the ‘derivation’∇ does not obey the ordinary Leibniz rule. In fact,
application of∇ to, say, higher powers off becomes increasingly cumbersome (nevertheless
there is a certain systematic in it). One gets for example (withq := ∇ik):
q(f1 . . . fn) =

∑
i

f1 . . . q(fi) . . . fn

+
∑
ij

f1 . . . q(fi) . . . q(fj ) . . . fn + · · · + q(f1) . . . q(fn). (55)

Due to the discreteness of the formalism and, as a consequence, the inevitable bilocality of
the derivative there is no chance to get something like a true Leibniz rule on this level.

It is perhaps worth mentioning that the above establishes an interesting abstract algebraic
multiplication structure which is called in [25] a ‘Cuntz algebra structure’ (occurring there,
however, in another context).

Observation 3.28 (Cuntz algebra).

q(f · g) = q(f ) · g + f · q(g)+ q(f ) · q(g) (56)

and analogously for vector fields
∑
aik∇ik.

With u := 1+ q we furthermore get

u(f · g) = u(f ) · u(g) (57)

and

q(f · g) = q(f ) · g + u(f ) · q(g) (58)

i.e. a ‘twisted derivation’ withu an endomorphism on some algebra,A, of functions onV .

As is the case with∇ik, the product rule for higher products can be inferred inductively:

q(f1 . . . fn) =
∑
i

f1 . . . q(fi) . . . fn

+
∑
ij

f1 . . . q(fi) . . . q(fj ) . . . fn + · · · + q(f1) . . . q(fn). (59)

Definition 3.29 ((co)tangential space).We call the space spanned by the∇ik at nodeni the
tangential spaceTi . Correspondingly we introduce the space spanned by thedik at nodeni
and call it the cotangential spaceT ∗i with the dik acting as linear forms overTi via

〈dik|∇ij 〉 = δkj . (60)

Definition/observation 3.30.Higher tensor products of differential forms at a nodeni can
now be defined as multilinear forms

〈dik1 ⊗ · · · ⊗ dikn |(∇il1, . . . ,∇iln )〉 := δk1l1 × · · ·×δknln (61)

and linear extension.
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Next we extend these concepts to functionsf ∈ C0 and ‘differential operators’ or
‘vector fields’

∑
aik∇ik. We have to check whether this is a natural(!) definition.

Observation 3.31.Vector fieldsv :=∑ aik∇ik are assumed to act on functionsf =∑ fini
in the following manner

v(f ) :=
∑

aik(fk − fi)ni (62)

i.e. they mapC0→ C0.

Corollary 3.32.Note that this implies

∇iknk = ni ∇ikni = −ni (63)

∇kink = −nk ∇kini = nk. (64)

Observation 3.33.‘Differential forms’ ω = ∑
gikdik act on vector fieldsv = ∑

aik∇ik
according to

〈ω|v〉 =
∑

gikaikni . (65)

With these definitions we can calculate〈df |v〉 with

df =
∑

(fk − fi)dik. (66)

Hence

〈df |v〉 =
〈∑

(fk − fi)dik|
∑

aik∇ik
〉
=
∑

(fk − fi)aikni (67)

which equals(∑
aik∇ik

)(∑
fini

)
= v(f ). (68)

Consequence 3.34.Our geometric interpretation of the algebraic objects reproduces the
relation:

〈df |v〉 = v(f ) (69)

known to hold in ordinary differential geometry, as is the case for the following relations,
and shows that the definitions made above seem to be natural. Furthermore, vector and
covector fields are left modules under the action ofA:(∑

fini

)(∑
aik∇ik

)
:=
∑

fiaik∇ik (70)(∑
fini

)(∑
gikdik

)
:=
∑

figikdik. (71)

Conclusion 3.35.The above shows that, in contrast to classical differential geometry, we
have a dual pairing between vector and covector fields with the vector fields acting as
‘twisted’ derivations on the node functions while the corresponding differential forms obey
the graded Leibniz rule like their classical counterparts.

Another important geometrical concept is the notion of ‘connection’ or ‘ covariant
derivative’. Starting from the abstract concept of (linear) connection in the sense of Koszul
it is relatively straightforward to extend this concept to the noncommutative situation, given
a ‘finite projective module’ over some algebraA (instead of the sections of a vector bundle
over some manifoldM, the role ofA being played by the functions overM; see e.g.
[23, 25]. As to various refinements and improvements cf e.g. [31] and further references
given there).
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Without going into any details we want to briefly sketch how the concept of connection
can be immediately implemented in our particular model without referring to the more
abstract work. We regard (in a first step) a connection as a (linear) map from the fields
of tangent vectors to the tensor product of tangent vectors and dual differential forms as
defined above (and having certain properties).

Definition/observation 3.36 (connection).A field of connections,0, is defined at each node
ni by a (linear) map:

∇ik → γ
j

kl(ni) · ∇ij ⊗ dli (72)

where the indexi plays rather the role of the ‘coordinate’ni , the indexl is raised in order
to comply with the summation convention. Theγ jkl ’s are called ‘connection coefficients’.
The corresponding ‘covariant derivative’∇ obeys the relations
(i)

∇(v + w) = ∇(v)+∇(w) (73)

(ii)

∇(f · v) = v ⊗ df +∇(v) · f (74)

(iii)

∇(∇ik) = 0(∇ik) df =
∑

(fk − fi)dik. (75)

Remark. The tensor product in (ii) is understood as the pointwise product of fields at
each nodeni , i.e. ∇ik going with dik. This is to be contrasted with the abstract notion of
tensor product in, e.g. the above differential algebra�(A) which doesnot act locally, the
space consisting of, say, elements of the kindn1 ⊗ n2 ⊗ · · · ⊗ nk. These different parallel
structures over the same model shall be scrutinized in more detail elsewhere. Note that
the above extra locality structure is a particular property of our model class and does not
(openly) exist in the general approach employing arbitraryprojective modulesrespectively
differential algebras.

4. Intrinsic dimension in networks, graphs and other discrete systems

There exist a variety of concepts in modern mathematics which extend the ordinary or naive
notion of dimensionone is accustomed to in e.g. differential topology or linear algebra. In
fact, topological dimensionand related concepts are notions which are perhaps even closer
to the underlying intuition (cf e.g. [32]).

Apart from the purely geometric concept there is also an important physical role being
played by something like dimension, having e.g. pronounced effects on the behaviour of,
say, many-body systems near theirphase transition pointsor in thecritical region.

But even in the case of, e.g. lattice systems they are usually treated as being embedded
in an underlying continuous background space (typically Euclidean) which supplies the
concept of ordinary dimension so that theintrinsic dimensionof the discrete array itself
does usually not openly enter the considerations.

Anyway, it is worthwhile even in this relatively transparent situation to have a closer
look on the situations where attributes of something like dimension really enter the physical
stage. Properties of models of, say, statistical mechanics are typically derived from the
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structure of the microscopic interactions of their constituents. This then is more or less the
only place where dimensional aspects enter the calculations.

Naive reasoning might suggest that it is something like the number of nearest neighbours
(in e.g. lattice systems) which encodes the dimension of the underlying space and influences
via that way the dynamics of the system. However, this surmise, as we will show in the
following, does not reflect the crucial point which is considerably more subtle.

This holds the more so for systems which cannot be considered as being embedded in
a smooth regular background and hence do not inherit their dimension from the embedding
space. A case in point is our primordial network in which Planck-scale physics is assumed
to take place. In our approach it is in fact exactly the other way round. Smooth spacetime
is assumed to emerge via aphase transitionor a certaincooperative behaviourand after
some ‘coarse graining’ from this more fundamental structure.

Problem 4.1.Formulate an intrinsic notion of dimension for model theories without making
recourse to the dimension of some continuous embedding space.

As a first step we will show that graphs and networks as introduced in the preceding
sections have a natural metric structure. We have already introduced a certain neighbourhood
structure in a graph with the help of the minimal number of consecutive bonds connecting
two given nodes.

In a connected graph any two nodes can be connected by a sequence of bonds. Without
loss of generality one can restrict oneself topaths. One can then define the length of a path
(or sequence of bonds) by the numberl of consecutive bonds making up the path.

Definition/observation 4.2.Among the paths connecting two arbitrary nodes there exists at
least one with minimal length which we denote byd(ni, nk). This d has the properties of
a metric, i.e:

d(ni, ni) = 0 (76)

d(ni, nk) = d(nk, ni) (77)

d(ni, nl) 6 d(ni, nk)+ d(nk, nl). (78)

(The proof is more or less evident.)

Corollary 4.3. With the help of the metric one gets a natural neighbourhood structure around
any given node, whereUm(ni) comprises all the nodes,nk, with d(ni, nk) 6 m, ∂Um(ni)
the nodes withd(ni, nk) = m.

This natural neighbourhood structure enables us to develop the concept of an intrinsic
dimension on graphs and networks. To this end one has at first to realize what property really
matters physically (e.g. dynamically), independently of the kind of model or embedding
space.

Observation 4.4.The crucial and characteristic property of, say, a graph or network which
may be associated with something like dimension is the number of ‘new nodes’ inUm+1

compared toUm for m sufficiently large orm→∞. The deeper meaning of this quantity
is that it measures the kind of ‘wiring’ or ‘connectivity’ in the network and is therefore a
‘topological invariant’.

Remark.In the following I shall be very brief on this ramified topic as much more details
have been presented and proved (in [8]). Instead I would like to discuss certain related
ideas.
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In many cases one expects the number of nodes inUm to grow like some powerD
of m for increasingm. By the same token one expects the number of new nodes after an
additional step to increase proportional tomD−1. With | · | denoting the number of nodes
we hence expect frequently the following to hold:

|Um+1| − |Um| = |∂Um+1| = f (m) (79)

with

f (m) ∼ mD−1 (80)

for largem.

Definition 4.5.‘The’ intrinsic dimension D of a homogeneous (infinite) graph is given by

D − 1 := lim
m→∞(ln f (m)/ lnm) (81)

or

D := lim
m→∞(ln |Um|/ lnm) (82)

provided that a unique limit exists!
What does exist in any case is lim inf respectively lim sup which can then be considered

as upper and lower dimension. If they coincide we are in the former situation. By
‘homogeneous’ we mean that the graph ‘looks locally more or less the same’ geometrically
everywhere, in particular its dimensionD should not depend on the reference point (and
that the two definitions of graph dimension given above coincide!).

Remark.
(1) One might naively expect that ‘regularity’, i.e. constant node degree, plus certain

other conditions imply homogeneity but this is a highly nontrivial question. There are e.g.
simple examples of regular graphs which do not ‘look the same’ around every node. That
is, a so-called ‘trivalent graph’, which is frequently taken as a discretized standard example
in various versions of quantum gravity (see e.g. the above-mentioned literature about spin
networks), is ‘planar’, i.e. can be embedded in the plane. This may lead to the erroneous
conclusion that its ‘natural dimension’ is two. On the other side, our analysis shows,
that its ‘intrinsic dimension’ depends crucially on the details of its wiring and can even
become infinite in case of a trivalent tree. Furthermore, it is a fascinating and nontrivial
task to characterize, e.g. the dimension of regular lattices (or ‘triangulations’) in a purely
combinatorial manner without using a background space. This shall, however, be done
elsewhere.

(2) On the other side we showed in [8] that, among other things, uniform boundedness
of the node degree guarantees already the independence ofD with respect to the reference
point! Furthermore we were able to construct graph models for each given (fractal)
dimensionD ∈ R. Due to discreteness, the relation between the two definitions of dimension
may be a little subtle (as is the case for the various fractal dimensions; there may be
exceptional graphs where they do not coincide).

(3) Other (but related) definitions of dimension are possible, incorporating e.g. the bonds
instead of the nodes.

(4) For practical purposes one may also introduce a notion of local dimension around
certain nodes or within certain regions of a regular graph if the above limit is approached
sufficiently fast locally.

(5) Particularly interesting phenomena are expected to show up if this concept is applied
within the regime of ‘random graphs’ (see e.g. [11]).
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(6) For some remarks concerning more or less related ideas in the literature see [8].

That this definition is reasonable can be seen by applying it to ordinary cases like regular
translation invariant lattices. It is, however, not evident that such a definition makes sense
for arbitrary graphs; in other words, a (unique) limit point may not always exist. It seems
to be a highly nontrivial task to characterize the conditions which imply such a limit to
exists.

Observation 4.6.For regular latticesD coincides with the dimension of the Euclidean
embedding spaceDE .

Proof. This can be rigorously proved but it is perhaps more instructive to simply draw
a picture of the consecutive series of neighbourhoods of a fixed node for e.g. a two-
dimensional Bravais lattice. It is fairly obvious that form sufficiently large the number
of nodes inUm goes like a power ofm with the exponent being the embedding dimension
DE as the Euclidean volume ofUm grows with the same power. �

Remark.
(1) ForUm too small the number of nodes may deviate from an exact power law which

in general becomes only correct for sufficiently largem.
(2) The number of nearest neighbours, on the other side, doesnot influence the exponent

but rather shows up in the prefactor. In other words, it influences|Um| for m small but
drops out asymptotically by taking the logarithm. For an ordinary Bravais lattice withNC
the number of nodes in a unit cell one has asymptotically

|Um| ∼ NC ·mDE (83)

and hence

D = lim
m→∞(ln(NC ·m

DE)/ lnm) = DE + lim
m→∞(NC/ lnm) = DE (84)

independently ofNC .

Matters become much more interesting and subtle if one studies more general graphs
than simple lattices. Note that there exists a general theorem (in fact a specialization of the
more general result about simplicial complexes we mentioned in the preceding section to
one-simplices), showing that practically every graph can be embedded inR3 and still quite
a few inR2 (planar graphs).

This shows again that something like the dimension of the embedding space is in general
not a characteristic property of a network or graph. On the contrary, it is generically entirely
uncorrelated with itsintrinsic dimensionwe defined above. An extreme example is a ‘tree
graph’, i.e. a graph without ‘loops’. In the following we study an infinite, regular tree graph
with node degree 3, i.e. three bonds branching off each node. The absence of loops means
that the ‘connectivity’ is extremely low which results in an exceptionally high ‘dimension’
as we will see.

Starting from an arbitrary node we can construct the neighbourhoodsUm and count
the number of nodes inUm or ∂Um. U1 contains three nodes which are linked with the
reference noden0. There are two other bonds branching off each of these nodes. Hence in
∂U2 = U2\U1 we have 3· 2 nodes and by induction

|∂Um+1| = 3 · 2m (85)



8020 M Requardt

which implies

D − 1 := lim
m→∞(ln |∂Um+1|/ lnm) = lim

m→∞(m · ln 2/ lnm+ 3/ lnm) = ∞. (86)

Hence we have the following observation.

Observation 4.7 (regular tree).The intrinsic dimension of an infinite regular tree is∞ and
the number of new nodes grows exponentially like somen(n − 1)m (n being the node
degree).

Remark. D = ∞ is mainly a result of the absence of loops and of regularity, in other
words: there is exactly one path, connecting any two nodes. This is usually not so in other
graphs, e.g. lattices, where the number of new nodes grows at a much slower pace (whereas
the number of nearest neighbours can nevertheless be large). This is due to the existence of
many loops such that many of the nodes which can be reached from, say, a node of∂Um by
one step are already contained inUm itself. On the other hand we recently constructed [8]
tree graphs having an arbitrary fractal dimension (they are, however, not regular, i.e. having
a varying node degree, in particular they have a lot of endpoints). Hence the absence of
loops is not the only reason for large graph dimensions.

We have seen that for, say, lattices the number of new nodes grows like some fixed
power ofm while for, say, regular treesm occurs in the exponent. The borderline can be
found as follows.

Observation 4.8.If for m→∞ the average number of nodes inUm+1 per node contained
in Um is uniformly away from zero or, stated differently

|Um+1|/|Um| > 1+ ε (87)

for someε > 0 then we have exponential growth, in other words, the intrinsic dimension
is∞.

The corresponding result holds withUm being replaced by∂Um.

Proof. If the above estimate holds for allm > m0 we have by induction:

|Um| > |Um0| · (1+ ε)m−m0. (88)

�

Potential applications of this concept of intrinsic dimension are manifold. Our main
goal is to develop a theory which explains how our classical spacetime and what we like
to call the ‘physical vacuum’ has emerged from a more primordial and discrete background
via some sort of phase transition (the first preliminary steps being done in [11]).

In this context we can also ask in what sensemacroscopicspacetime dimension four
is exceptional, i.e. whether it is merely an accident or whether there is a cogent reason for
it. We hope that the above concept of intrinsic dimension together with the dynamics of its
possible change may help to come to grips with such a fundamental question.
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